skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Seo, Yejoon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cannabidiol (CBD) is viewed as a promising therapeutic agent against a variety of health ailments; however, its efficacy is limited by poor aqueous solubility. Amorphous solid dispersions (ASDs) can enhance the solubility of therapeutics by distributing them throughout a polymer matrix. In consideration of ASD formulations with CBD, we investigate the interactions of CBD with various polymers: poly(vinylpyrrolidone) (PVP), poly(vinylpyrrolidone)/vinyl acetate (PVP/VA) copolymer, hydroxypropyl methylcellulose phthalate (HPMCP), hydroxypropyl methylcellulose acetate succinate (HPMCAS), and poly(methyl methacrylate) (PMMA). Both the experiment and molecular dynamics simulation reveal diverse mixing behavior among the set of polymers. Detailed structural and nanoscale interaction analyses suggest that positive deviations from ideal mixing behavior arise from the formation of stable polymer–CBD hydrogen bonds, whereas negative deviations are associated with disruptions to the polymer–polymer hydrogen bond network. Polymer–water interaction analyses indicate the significance of polymer hydrophobicity that can lead to poor dissolution of CBD. These results have implications for drug dissolution rates based on how CBD and water interact with each polymer. Furthermore, these insights may be used to guide ASD formulations for CBD or other small-molecule therapeutic agents. 
    more » « less